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Abstract

The Milstar communications satellite system will provide secure antijam communication capa-

bilities for DoD operations into the next century. In order to accomplish this task, the Milstar

system will employ precise timekeeping on its satellites and at its ground control stations. The

constellation will consist of four satellites in geosynchronous orbit, each carrying a set of four

rubidium (Rb) atomic clocks. Several times a day, during normal operation, the Mission Control

Element (MCE) will collect timing information from the constellation, and after several days use

this information to update the time and frequency of the satellite clocks. The MCE will maintain

precise time with a cesium (Cs) atomic clock, synchronized to UTC(USNO) via a GPS receiver. We

have developed a Monte Carlo simulation of Milstar's space segment timekeeping. The simulation

includes the effects of: uplink/downlink time transfer noise, satellite crosslink time transfer noise,
satellite diurnal temperature variations, satellite and ground station atomic clock noise, and also

quantization limits regarding satellite time and frequency corrections. The Monte Carlo simulation

capability has proven to be an invaluable tool in assessing the performance characteristics of various

timekeeping algorithms proposed for Milstar, and also in highlighting the timekeeping capabilities

of the system. Here, we provide a brief overview of the basic Milstar timekeeping architecture as it

is presently envisioned. We then describe the Monte Carlo simulation of space segment timekeeping,

and provide examples of the simulation's efficacy in resolving timekeeping issues.

Introduction

Figure 1 shows the baseline timekeeping architecture for Milstar as presently envisioned. The

constellation will consist of four satellites in geosynchronous orbitlll, each carrying a set of four

rubidium (Rb) atomic clocks, though at any one time only one clock will be operational on any

given satellite. A satellite's active clock is labeled as either master (MSR), monitor (MON) or

slave. The slave clock ties its time and oscillator frequency to the master via timing comparisons

performed through the satellite crosslinks using a slaving procedure developed by Lockheed

(the Milstar prime contractor)IZl. The monitor clocks are free-running, and are present in

order to assess the health of the MSR again via the satellite crosslinks. Several times a day,

during normal operation, the Mission Control Element (MCE) collects timing information on

the Triplet of free-running clocks (i.e., MSR, MON1 and MON2), and after several days uses
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this timing information to update the time and oscillator frequencies of the Triplet. The MCE

maintains precise time with a cesium (Cs) atomic clock, which is synchronized to UTC.

In outline, Milstar timekeeping would appear to be straightforward and robust; however, in

detail precise Milstar timekeeping is a complex matter. The time comparisons between satellites

via the satellite crosslinks, and those using the uplink/downlink between the inview satellite and

the MCE, are not perfect: un-accounted for equipment delays can introduce non-negligible

timing errors into the system. Moreover, even if the communications links were perfect, there

are limits as to the accuracy with which time and oscillator frequency corrections may be applied

to the satellite clocks. These limits are a consequence of both the satellite hardware and

Milstar operating procedures. Additionally, the diurnal temperature variations that the satellites

experience introduce timing errors as a consequence of the Rb atomic clock's (albeit slight)

temperature sensitivityl_l. Though individually these processes are straightforward, with regard

to system timekeeping they act together in non--obvious ways as part of a "satellite-to-MCE

feedback loop": these processes cause time differences between the satellite and MCE, which

the MCE attempts to correct periodically. Finally, it most be recognized that even though the

satellite Rb atomic clocks will introduce no more than about 4 /zs of timing error into the

system in a weekl41, this requires the MCE to set them perfectly. As a consequence of these

considerations, it should be recognized that cursory analyses of timekeeping performance may

neglect important st,btleties, and could lead to incorrect conclusions.

In order to accurately address system level timekeeping issues, several approaches may be

taken. First, one might consider developing a hardware prototype of system timekeeping.

This approach is impractical not only because it requires a large capital outlay for the various

pieces of equipment, but also because investigations into system timekeeping over periods of

months would have to be done in real time. Alternatively, one could attempt to solve the

satellite-to-MCE feedback loop equations. This too is an impractical approach, because closed

form solutions could not be obtained without significant approximation. Moreover, altering

system characteristics slightly (e.g., system algorithms) could force a re-derivation of the entire

set of feedback loop equations, requiring significant amotmts of additional effort. Ot, r approach

to answering system level timekeeping questions has none of the above mentioned drawbacks,

as it is based on Monte Carlo simulationlSl. With a Monte Carlo approach, the results are

obtained without approximation; years of system timekeeping experience can be built up over

the course of several hours, and changing system algorithms requires nothing morc than the
change of a subroutine.

Figure 2 is a fimctional diagram of the Monte Carlo concept, illustrating some of the important
components of this simulation capability. The studies to be discussed below have focussed

on the MCE's management of space timekeeping assets, and the performance of those assets

under varied operational conditions. Generally, however, Milstar timekeeping also includes

the process of synchronizing Milstar time, which is maintained at the MCEs, to UTC which is

maintained by the Naval Observatory for DoD programs. Synchronizing Milstar time to UTC

should be straightforward, and hence not require detailed Monte Carlo simulations for the

resolution of timekeeping issues.

In the analysis of system timekeeping, we start by generating a time series of random frequency

fluctuations for both a satellite and MCE atomic clockI6,71. Additionally, whenever timing
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comparisonstakeplacebetweenclocks,wesimulatethe appropriatecommunicationlink time-
transfernoise(i.e., eitheruplink/downlinkor crosslink),and makeallowancesfor anylimitations
as to timekeepingcorrections. Finally, we includein the simulationthe diurnal temperature
variationsthat a satelliteclockmightexperience,andthe resultingdiurnal frequencyvariations.
All of thesestochasticand deterministicprocessrealizationsare generatedin a 486-PC,and
frequencyvariationsare integratedand combinedwith other timing errors. The output of a
singlesimulationis the satellite time error as a fimction of time, and this canbe obtainedfor
anyone of the four satelliteclocks(i.e., MSR, MON or Slave). By performing thousandsof
thesesimulationswc generatestatisticson Milstar's timekeepingperformance.

Simulation of Atomic Clock Noise

The success of a Monte Carlo analysis of system timekeeping requires the accurate simulation of

various timekeeping fluctuations, and in this regard one of the most significant challenges is the

simulation of an atomic clock's colored (i.e., flicker and random-walk) frequency fluctuations.

The approach we employ may be referred to as a "recursive filter" approacht6l, and is

best described by considering the spectral density of an atomic clock's random processes.
Experimentally, if one had white noise, and one wanted to turn this into colored noise, then

one would simply pass the white noise through a filter. The filter function would then shape

the noise process's spectral density into some desired form. This is essentially the method we

employ for simulating colored noise processes as illustrated in Fig. 3[Sl.

In order to simulate a noise process with a spectral density that is an even function of Fourier

frequency f, we start with computer generated random numbers. These numbers have a

uniform probability distribution, but may be transformed into random numbers with a normal

(i.e., gaussian) probability distribution using the standard Box-Mueller algorithml91. At this

point, we have a simulation of a gaussian white noise process. These numbers are input to a

numerical filter, described by a transfer fimction H(f), and the spectral density of the filter

output is IH(f)[ 2. Thus, to simulate random-walk noise we just need to choose H(f) _., l/f.

Simulating a noise process that is an odd fimction of Fourier frequency is a bit trickier, as H(f)

would then have to be a function of Fourier frequency to some fractional power. (If H(f) is

a rational fimction, then the inverse of H(f) can be found by the method of partial fractions.)
Since the MCE's Cs atomic clock noise has a flicker noise component, this portion of the

simulation is important for properly modeling the MCE's timekeeping capability. Simulating

noise processes with [INSERT 3] may be accomplished by cascading filters that are integral
fimctions of Fourier frequency.[6] By a judicious choice of filter fimctions, the cascade can be

made to approximate an overall filter that is not a rational function of Fourier frequency, which

in turn yields an [INSERT 4] that is (approximately) an odd fimction of Fourier frequency

As a final point, it should be mentioned that in deriving the equations for the recursive filter, it

is assumed that the filter's operation is in steady-state. This is tantamount to assuming that the
filter has been processing data since t = -oo. The fact that the recursive filter must be started

at some finite time in the Monte Carlo simulations is called the "Initialization Problem."[,Ol

Though a technical description of this problem and its solution is beyond the scope of the

present discussion, suffice it to say that if the Initialization Problem is not handled properly,
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the accuracy of system timekeeping simulations would have to be called into question. In the

present simulations we include initialization of both the satellite Rb atomic clocks and the

MCE's Cs atomic clock.

An example of our capability to simulate colored atomic frequency standard noise is illustrated

in Fig. 4. Using the method outlined above, we simulated the frequency flt,ctuations that

are expected for a Milstar satellite Rb atomic clock. We then performed an Allan standard
deviation calculation on these simulated frequency fluctuations, and the results are shown as

boxes in Fig. 4. The solid line represents the expected Allan standard deviation for the

satellite Rb atomic clocks based on clock manufacturer data. Clearly, the agreement between

our simulated frequency fluctuations and those truly generated by the Milstar satellite atomic

clock is excellent.

Figure 4 represents only one validation test for our Monte Carlo simulation of Milstar time-

keeping. However, at every stage in the development of the Monte Carlo simulation, tests were

performed to establish the simulation's verity. These tests included an accurate simulation of
the MCE's cesium atomic clock, specifically its flicker noise component, and a demonstration

that the simulation would generate expected results under well defined, though not necessarily

Milstar accurate, conditions.

Applications

The Monte Carlo simulation of Milstar timekeeping outlined above includes the full range of

timekeeping processes and elements associated with the MCE's management of Space Segment
assets, and it has been extensively exercised to address topics in both the single and multi-

satellite environments. In this section we provide examples of those applications. The first of

the examples concerns work that was performed several years ago when the question of how
the MCE would estimate satellite time and frequency offsets was unanswered. This example

will illustrate how various system algorithms can be easily changed and examined for their

effect on overall system timekeeping using a Monte Carlo approach. The second example deals

with the question of how satellite temperature variations influence precise satellite timekeeping.

This latter example illustrates the complicated fashion in which various processes combine to

produce a non-obvious dependence of timekeeping capability on system parameters.

A. MCE Estimation Algorithms

As discussed in the general description of Milstar timekeeping, the MCE will determine the

time offsets of all the satellites in the constellation via the inview satellite and crosslinked

data. This timing information will then be used by the MCE in an estimation algorithm in

order to determine the time and frequency corrections that need to be supplied to the various

free-running (i.e., Triplet) satellite clocks. One of the major timekeeping questions faced by

Milstar system planners in the mid-eighties concerned the form that the estimation algorithm

would take.

Figure 5 illustrates an MCE ranging on an inview satellite, and the timekeeping data that the
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MCE would collect (i.e., satellite time error as a function of measurement time). The time

error collected by the MCE will have the general form:

1 /0 /; /00_(¢) = _o + yo¢+ _D¢2+- [T(t,V) - To]d_+ _(¢)dt + y)_E(¢)dt +,_(_) (1)

Here, cx(r) is the time offset between the satellite and MCE at some time r, z0 is an initial

time offset, Y0 is a constant fractional frequency difference between the satellite Rb clock and

the MCE Cs clock, D is the fractional frequency aging rate of the satellite Rb clock (parts in

10 l'a per dayOtl, c, is the temperature coefficient of the satellite clock, T(t, 0) -7"o is the diurnal

temperature offset of the satellite clock from some nominal value, To, 9 sat and y_-MCE represent

the random fractional frequency fluctuations of the satellite and MCE clocks, respectively, and

e(T) is the measurement error associated with the MCE-to-spacecraft communication link. The

parameter 0 in the satellite temperature term represents the phase relationship between the

satellite's diurnal temperature cycle and the cycle of MCE corrections. The question addressed
with our Monte Carlo simulation, was how the MCE could best use the time error data

presented in Fig. 5 to periodically correct the satellite time and frequency. In the following,

the update interval will be defined as the period of time between MCE corrections of the
satellite clock.

On an examination of Eq. (1) for x(r), several possibilities for employing the time error

data of Fig. 5 present themselves. First, the MCE could restrict its consideration to data

collected only at the beginning and end of an update interval. The time error at the end of

the update interval would then be the time correction that the MCE needs to apply (6t), while

the frequency correction (6y) would come from the estimated rate of time error build up based

on the two time error measurements. If Tupdate is the length of the update interval, then the

time and fractional:frequency corrections to be applied by the MCE are:

6y = _(Tu,da_o)- _(o)
rupdate

(3)

This is called the 2-Point estimation algorithm, and has the advantage of being very simple.

An alternate procedure would be to take advantage of all the intervening data collected by

the MCE during the update interval. The data could then be fit to a straight line in order to

determine the appropriate time and frequency corrections:

/_t = 6y • 7update + t o (4)

Here, 6 9 and to are the slope and intercept determined by the linear least squares. This is

called the Linear estimation algorithm, and it is to be noted that the frequency correction is

determined by the slope of the linear least squares fit. Finally, by examining the above equation
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for x(_-), one might expect to do better at correcting the clock by fitting the data to a quadratic,

which would essentially be attempting to account for the Rb clock's aging rate:

6t = tO -4- _l" Tupdate + _ ' Tupdate
(5)

Here, _ is the linear coefficient of the least squares quadratic fit, which is essentially the initial

frequency offset of the clock, and [_ is the least squares estimate of the aging rate of the clock.

This is called the Quadratic estimation algorithm.

Using our Monte Carlo simulation of Milstar timekeeping, we were able to investigate the

performance of each of these estimation algorithms f121. The parameters that were employed in
the calctdations are collected in Table I. To determine the efficacy of any estimation algorithm,

we allowed the MCE to correct the satellite clock several times, essentially letting the system

get into a steady state, and then examined the satellite time error after either 3 or 10 days
of free-running operation. (Note from Table I that a 3 day free-running period corresponds

to the time error the satellite would have just prior to receiving its normal MCE correction.)

Hundreds of simulations were performed (each with a different satellite clock aging rate) to

generate the statistics of Milstar timekeeping, and the results of that analysis are collected in
Table II. In the table, the standard deviation of time error at the end of the free-running

period is tabulated for the various estimation algorithms. Since the Linear estimation algorithm
minimizes the spread of satellite time error, it is considered to be the best estimation algorithm

among these three. Similar results comparing the Linear estimation algorithm against a Kalman

Filter estimation algorithm eventually lead to the adoption of the Linear estimation algorithm

for the Milstar MCEs due to its simplicity.

The fact that the Linear estimation algorithm is superior to the Quadratic estimation algorithm

was initially something of a surprise. Since the Quadratic estimation algorithm more closely

models the t, nderlying performance of the satellite Rb atomic clock, one would typically expect it

to result in less timing error. After some study of this issue, we found that the poor performance

of the Quadratic algorithm derives from the influence of the measurement noise, _(T), and the

Rb atomic clock frequency noise, ' +_tYr , on the estimated coefficients. Apparently, these noise

processes strongly influence the estimated drift coefficient in the Qt, adratic algorithm, and of

course any error in that estimate has a strong influence on timekeeping since it contributes to

time error quadratically.

B. Satellite Temperature Variations and MCE Control of the

Satellite Clock

As any Milstar satellite orbits the Earth, its temperature will vary in a dit,rnal fashion, and in

the mid-eighties thermal analysis of the satellite payload indicated that the satellite clock would

experience peak-to-peak temperature variations of _ 20°F. The question arose as to how these

temperatt, re variations would inflt,ence satellite timekeeping, both for the crystal oscillator that
would be launched on DFS-I (the first Milstar satellite) and the Rb atomic clocks that would

be launched on st,bsequent satellites. Specifically, there was interest at the time in knowing

296



how large the satellite oscillator's temperature coefficient could get without impacting system
timekeeping performance.

Clearly, the MCE could choose to set up its cycle of satellite corrections anywhere within

the satellite's diurnal temperature cycle. The quantity expressing this relationship in Eq. (1)
is 0. For example, the MCE could choose to correct the satellite clock when the satellite

temperature is near its largest daily value; this would correspond to a value of 0 = 0 in Eq.
(1). Alternatively, the MCE could choose to correct the satellite clock when the satellite

temperature is near its daily mid-range value; this would correspond to a value of 0 = 7r/2 in

Eq. (1). (For the reader's general information, analysis has shown that the diurnal temperature

variations will be roughly sint,soidal. We note, however, that our calculations employ the

expected diurnal temperature variations and not a sinusoidal approximation.) Thus, in order

to study the influence of a satellite oscillator's temperature coefficient on system timekeeping,

it is necessary to specify 0. Since the actual value of 0 for any given satellite is an arbitrary

quantity, we performed two sets of analyses, one with 0 = 0 and the other with 0 = re�2.

Parameters for one illustrative study are collected in Table III, corresponding to a satellite clock

with characteristics very near those of a crystal oscillator clock. As discussed in the previous

example, our method was to allow the MCE to update the satellite clock through several update
intervals, essentially reaching a steady-state of timekeeping, and then to calculate the satellite

time offset at the end of a free-running period. For the case under discussion, the free-running
period was chosen to be 24 hours (i.e., the update interval). Again, hundreds of simulations

were performed, which allowed us to generate the statistics of Milstar system timekeeping, and
the results are shown in Fig. 6. In the figure, the 2 _r time error at the end of 24 hours is

plotted as a function of the satellite clock temperature coefficient. Two curves are shown, one

with the diurnal phase angle 0 = 0 and the other with 0 = 7r/2.

It is clear from the figure that there is a dependence of Milstar timekeeping on 0. Though

the strength of this dependence was unexpected, it could be rationalized as a consequence

of optimally choosing the data points employed by the MCE's estimation algorithm. More
surprising, however, were the specific results for 0 = _/2, where the satellite time error

is actually fotmd to be a decreasing filnction of clock temperature sensitivity (at least for

temperature coefficients less than about I x 1 _-11 /°C). It would appear that for 0 = 7r/2,

Milstar system performance is enhanced by having a clock with a slightly larger temperature
coefficient. This counter-intuitive result indicates that under certain conditions the effects of

the diurnal temperature variations on the Linear estimation algorithm can (to some extent)

compensate for the freqt, cncy aging of the standard. With regard to the question that motivated

these studies, the results of Fig. 6 indicate that the satellite clock temperature coefficients can

take on values up to ,,_ 1 x 10-11/°C (for arbitrary 0 without significantly changing Milstar system
timekeeping. This value is large, and indicates that the Milstar constellation can be made

relatively robust to satellite diurnal temperature variations. Moreover, if the MCE judiciously

chooses the correction cycle for the satellites under its control, then the diurnal temperature
variations might actually be beneficial to Miistar timekeeping.

Taking a broader view of the results shown in Fig. 6, these Monte Carlo simulations demonstrate

the complicated interplay among: satellite temperature variations, communication link time-

transfer noise, freqt, ency aging rates, and all the other parameters that are important to satellite
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timekeeping. The relationshipbetweensystem-time-error, satellite-oscillator-temperature-
coefficientand [INSERT 17]wasnot obviousprior to the Monte Carlo computations. Even
now,knowingthat the relationshipexists,it is not obviouswhat the optimum 0 value is for the

MCE's estimation algorithm. The important lesson to be learned is that intuitive predictions of

satellite timekeeping performance must be accepted warily. How all the various timekeeping

processes combine to yield the system performance is not always obvious, and in this regard a
Monte Carlo simulation of system timekeeping has great value.

Summary

The above discussion has reviewed a Monte Carlo simulation of Milstar timekeeping. Given

the complexity of Milstar timekeeping issues, our experience with these simulations has shown

that many results are non-intuitive, and that withot,t a Monte Carlo simulation capability

accurate predictions of system performance would be exceedingly difficult (if not impossible) to

obtain. Though the simulation capability was developed with Milstar in mind, the capability is

fairly general, and cot, ld easily be applied to timekeeping issues associated with other satellite

systems, for example GPS.
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MON 1 MON 2
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MCE

Mission Control Element

Figure 1: Operational diagram of the baseline Milstar timekeeping architecture. As discussed in
the text, the constellation will consist of four satellites labeled: MSR (master), MON (monitor) or

slave. The Mission Control Element (MCE) will periodically correct the time and oscillator

frequency' of the MSR and MONs.
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Figure 2: In the Monte Carlo simulation of Milstar timekeeping, realizations of random

timekeeping processes as well as deterministic processes (e.g., satellite temperature variations)

are generated. These fluctuations are combined to generate a single realization of a satellite

clock's time-error history. By examining thousands of such simulations, the statistics associated

with any clock's timekeeping performance may be built up for any set of parameters or operating

scenario.
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• Noise Generation for Sy(f) -- 1/f 2n, n=0,1,2,...

Uniform Probability Gausslan

Distribution White Noise
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Figure 3:

• Noise Generation for Sv(f ) ~ 1/f 2n*1

Gaussian
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(f) H3(f)

Sy(f) = IHt(f)H2(f)H3(f)l2

Method of simulating colored atomic frequency standard noise as discussed in the text.
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Figure 4: Allan standard deviation plot. The squares correspond to the Allan standard deviation

obtained by analyzing the frequency fluctuations simulated by our Monte Carlo program for a

Milstar satellite Rb atomic clock. The solid line represents the expected Allan standard deviation
based on Milstar clock manufacturer data.
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Figure 5: MCE ranging on an inview satellite and collecting time difference information. The

MCE-to-Satellite time difference information is used to determine the time and frequency

correction that the MCE should apply to the satellite.
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Figure 6: Satellite time error after 24 hours of free-running operation. Temperature coefficients

for the satellite clock are per degree Celsius. The two curves labeled 0 = () and e = rt/2

correspond to different phase relationships between the satellite's diurnal temperature cycle and

the MCE's satellite correction cycle.
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Table I: Parameters used in the Monte Carlo simulation of Milstar timekeeping for the question

of which estimation algorithm is best for the Milstar system.

Parameter

Satellite Rb Clock Allan Standard Deviation

Satellite Rb Clock Frequency Aging

Satellite Rb Clock Temperature Coefficient

Diurnal Temperature Variation Phase Angle, 0

Update Interval, Tupdate

MCE-to-Satellite Measurement Interval

Value

2x10-11/4T + 4x10 -15 x/x

0.0 + 5.0xl0-13/day

1.0x I 0-12/o F

0.0

3 days

8 hours

Table II: Results from Monte Carlo analysis of MCE estimation algorithms. The results show

the standard deviation in microseconds of satellite time error at the end of a 3 day and 10 day

free-running period.

Estimation Algorithm 3-Day SD 10-Day SD

2-Point 2.5 7.4

Linear 2.2 6.7

Quadratic 4.6 14.3

Table III: Parameters used in the Monte Carlo simulation of Milstar timekeeping for the

question of how satellite temperature variations would influence satellite timekeeping.

Parameter

Satellite Clock Allan Standard Deviation

Satellite Clock Frequency Aging

Satellite Clock Temperature Coefficient

Diurnal Temperature Variation Phase, 0

Update Interval, Tupdate

MCE-to-Satellite Measurement Interval

MCE Estimation Algorithm

Value

5x10-13/_x + 5x10 -14 _'t

2.0 + 0.5xl0-11/day

0.0 to 4.0xl0-11/°F

0.0 and rt/2 radians

24 hours

2 hours

Linear
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